Exercise 6

Solve the differential equation or initial-value problem using the method of undetermined coefficients.

$$
y^{\prime \prime}-4 y^{\prime}+4 y=x-\sin x
$$

Solution

Since the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
y_{c}^{\prime \prime}-4 y_{c}^{\prime}+4 y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r x}-4\left(r e^{r x}\right)+4\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-4 r+4=0
$$

Solve for r.

$$
\begin{gathered}
(r-2)^{2}=0 \\
r=\{2\}
\end{gathered}
$$

Two solutions to the ODE are $e^{2 x}$ and $x e^{2 x}$. By the principle of superposition, then,

$$
y_{c}(x)=C_{1} e^{2 x}+C_{2} x e^{2 x} .
$$

On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=x-\sin x \tag{2}
\end{equation*}
$$

Since the inhomogeneous term is the sum of a polynomial of degree 1 and a sine, the particular solution is $y_{p}=A x+B+C \cos x+D \sin x$.
$y_{p}=A x+B+C \cos x+D \sin x \quad \rightarrow \quad y_{p}^{\prime}=A-C \sin x+D \cos x \quad \rightarrow \quad y_{p}^{\prime \prime}=-C \cos x-D \sin x$
Substitute these formulas into equation (2).

$$
\begin{gathered}
(-C \cos x-D \sin x)-4(A-C \sin x+D \cos x)+4(A x+B+C \cos x+D \sin x)=x-\sin x \\
(-4 A+4 B)+(4 A) x+(-C-4 D+4 C) \cos x+(-D+4 C+4 D) \sin x=x-\sin x
\end{gathered}
$$

Match the coefficients on both sides to get a system of equations for A, B, C, and D.

$$
\left.\begin{array}{rl}
-4 A+4 B & =0 \\
4 A & =1 \\
-C-4 D+4 C & =0 \\
-D+4 C+4 D & =-1
\end{array}\right\}
$$

Solving it yields

$$
A=\frac{1}{4} \quad \text { and } \quad B=\frac{1}{4} \quad \text { and } \quad C=-\frac{4}{25} \quad \text { and } \quad D=-\frac{3}{25} .
$$

which means the particular solution is

$$
y_{p}=\frac{1}{4} x+\frac{1}{4}-\frac{4}{25} \cos x-\frac{3}{25} \sin x .
$$

Therefore, the general solution to the ODE is

$$
\begin{aligned}
y(x) & =y_{c}+y_{p} \\
& =C_{1} e^{2 x}+C_{2} x e^{2 x}+\frac{1}{4} x+\frac{1}{4}-\frac{4}{25} \cos x-\frac{3}{25} \sin x,
\end{aligned}
$$

where C_{1} and C_{2} are arbitrary constants.

